Convergence Properties of Feasible Descent Methods for Solving Variational Inequalities in Banach Spaces
نویسندگان
چکیده
This work is concerned with the analysis of convergence properties of feasible descent methods for solving monotone variational inequalities in Banach spaces.
منابع مشابه
Algorithm for solving a new class of general mixed variational inequalities in Banach spaces
In this paper, a new concept of -proximal mapping for a proper subdifferentiable functional (which may not be convex) on a Banach space is introduced. An existence and Lipschitz continuity of the -proximal mapping are proved. By using properties of the -proximal mapping, a new class of general mixed variational inequalities is introduced and studied in Banach spaces. An existence theorem of sol...
متن کاملThe System of Vector Variational-like Inequalities with Weakly Relaxed ${eta_gamma-alpha_gamma}_{gamma inGamma}$ Pseudomonotone Mappings in Banach Spaces
In this paper, we introduce two concepts of weakly relaxed ${eta_gamma-alpha_gamma}_{gamma in Gamma}$ pseudomonotone and demipseudomonotone mappings in Banach spaces. Then we obtain some results of the solutions existence for a system of vector variational-like inequalities with weakly relaxed ${eta_gamma-alpha_gamma}_{gamma in Gamma}$ pseudomonotone and demipseudomonotone mappings in reflexive...
متن کاملIterative Methods for Solving Systems of Variational Inequalities in Reflexive Banach Spaces
We prove strong convergence theorems for three iterative algorithms which approximate solutions to systems of variational inequalities for mappings of monotone type. All the theorems are set in reflexive Banach spaces and take into account possible computational errors.
متن کاملA Generalized Hybrid Steepest-Descent Method for Variational Inequalities in Banach Spaces
The hybrid steepest-descent method introduced by Yamada 2001 is an algorithmic solution to the variational inequality problem over the fixed point set of nonlinear mapping and applicable to a broad range of convexly constrained nonlinear inverse problems in real Hilbert spaces. Lehdili and Moudafi 1996 introduced the new prox-Tikhonov regularization method for proximal point algorithm to genera...
متن کاملRegularization of Nonlinear Ill-posed Equations with Accretive Operators
We study the regularization methods for solving equations with arbitrary accretive operators. We establish the strong convergence of these methods and their stability with respect to perturbations of operators and constraint sets in Banach spaces. Our research is motivated by the fact that the fixed point problems with nonexpansive mappings are namely reduced to such equations. Other important ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 10 شماره
صفحات -
تاریخ انتشار 1998